Nonlinear Viscosity Algorithm with Perturbation for Nonexpansive Multi-Valued Mappings

author

Abstract:

In this paper, based on viscosity technique with perturbation, we introduce a new non-linear viscosity algorithm for finding a element of the set of fixed points of nonexpansivemulti-valued mappings in a Hilbert space. We derive a strong convergence theorem for thisnew algorithm under appropriate assumptions. Moreover, in support of our results, somenumerical examples (using Matlab software) are also presented.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

An Explicit Viscosity Iterative Algorithm for Finding Fixed Points of Two Noncommutative Nonexpansive Mappings

We suggest an explicit viscosity iterative algorithm for finding a common element in the set of solutions of the general equilibrium problem system (GEPS) and the set of all common fixed points of two noncommuting nonexpansive self mappings in the real Hilbert space.  

full text

Generalized viscosity approximation methods for nonexpansive mappings

We combine a sequence of contractive mappings {fn} and propose a generalized viscosity approximation method. One side, we consider a nonexpansive mapping S with the nonempty fixed point set defined on a nonempty closed convex subset C of a real Hilbert space H and design a new iterative method to approximate some fixed point of S, which is also a unique solution of the variational inequality. O...

full text

Common fixed point theorem for nonexpansive type single valued mappings

The aim of this paper is to prove a common fixed point theorem for nonexpansive type single valued mappings which include both continuous and discontinuous mappings by relaxing the condition of continuity by weak reciprocally continuous mapping. Our result is generalize and extends the corresponding result of Jhade et al. [P.K. Jhade, A.S. Saluja and R. Kushwah, Coincidence and fixed points of ...

full text

Weak Convergence of Mann Iterative Algorithm for two Nonexpansive mappings

The mann fixed point algorithm play an importmant role in the approximation of fixed points of nonexpansive operators. In this paper, by considering new conditions, we prove the weak convergence of mann fixed point algorithm, for finding a common fixed point of two nonexpansive mappings in real Hilbert spaces. This results extend the privious results given by Kanzow and Shehu. Finally, we give ...

full text

Convergence theorems of multi-step iterative algorithm with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces

The purpose of this paper is to study and give the necessary andsufficient condition of strong convergence of the multi-step iterative algorithmwith errors for a finite family of generalized asymptotically quasi-nonexpansivemappings to converge to common fixed points in Banach spaces. Our resultsextend and improve some recent results in the literature (see, e.g. [2, 3, 5, 6, 7, 8,11, 14, 19]).

full text

Viscosity Approximation Methods for Nonexpansive Nonself-Mappings in Hilbert Spaces

Viscosity approximation methods for nonexpansive nonself-mappings are studied. Let C be a nonempty closed convex subset of Hilbert space H , P a metric projection of H onto C and let T be a nonexpansive nonself-mapping from C into H . For a contraction f on C and {tn} ⊆ (0,1), let xn be the unique fixed point of the contraction x → tn f (x) + (1− tn)(1/n) ∑n j=1(PT) x. Consider also the iterati...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 14  issue 2

pages  1- 22

publication date 2020-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023